Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica
نویسندگان
چکیده
UNLABELLED In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR(+) allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR(+) strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. IMPORTANCE Reversible lysine acylation is used by cells of all domains of life to modulate the function of proteins involved in diverse cellular processes. Work reported herein begins to outline the regulatory circuitry that integrates the expression of genes encoding enzymes that control the activity of a central metabolic enzyme in C2 metabolism. Genetic analyses revealed effects on reversible lysine acylation that greatly impacted the growth behavior of the cell. This work provides the first insights into the complexities of the system responsible for controlling reversible lysine acylation at the transcriptional level in the enteropathogenic bacterium Salmonella enterica.
منابع مشابه
Complex regulation of the sirtuin-dependent reversible lysine acetylation system of Salmonella enterica
The extensive involvement of the reversible lysine acylation (RLA) system in metabolism has attracted the attention of investigators interested in understanding the fundamentals of prokaryotic and eukaryotic cell function. Research in this area of cell physiology is diverse, ranging from probing the molecular bases of human diseases, to optimizing engineered metabolic pathways for biotechnologi...
متن کاملDeterminants within the C-Terminal Domain of Streptomyces lividans Acetyl-CoA Synthetase that Block Acetylation of Its Active Site Lysine In Vitro by the Protein Acetyltransferase (Pat) Enzyme
Reversible lysine acetylation (RLA) is a widespread regulatory mechanism that modulates the function of proteins involved in diverse cellular processes. A strong case has been made for RLA control exerted by homologues of the Salmonella enterica protein acetyltransferase (SePat) enzyme on the broadly distributed AMP-forming CoA ligase (a.k.a. acyl-CoA synthetases) family of metabolic enzymes, w...
متن کاملN-lysine propionylation controls the activity of propionyl-CoA synthetase.
Reversible protein acetylation is a ubiquitous means for the rapid control of diverse cellular processes. Acetyltransferase enzymes transfer the acetyl group from acetyl-CoA to lysine residues, while deacetylase enzymes catalyze removal of the acetyl group by hydrolysis or by an NAD(+)-dependent reaction. Propionyl-coenzyme A (CoA), like acetyl-CoA, is a high energy product of fatty acid metabo...
متن کاملJamming Up the “β-Staple”: Regulation of SIRT1 Activity by Its C-Terminal Regulatory Segment (CTR)
Acetylation is one of the most abundant post-translational modifications in biology and is conserved in all kingdoms of life. As many as 90% of proteins involved in Salmonella enterica metabolic pathways are acetylated [1], primarily at lysine residues, and more than 80% of human proteins are N-terminally acetylated [2]. Analogous to phosphorylation, attachment of an acetyl group to a protein a...
متن کاملBiochemical and Thermodynamic Analyses of Salmonella enterica Pat, a Multidomain, Multimeric Nε-Lysine Acetyltransferase Involved in Carbon and Energy Metabolism
In the bacterium Salmonella enterica, the CobB sirtuin protein deacetylase and the Gcn5-related N(ε)-acetyltransferase (GNAT) Pat control carbon utilization and metabolic flux via N(ε)-lysine acetylation/deacetylation of metabolic enzymes. To date, the S. enterica Pat (SePat) acetyltransferase has not been biochemically characterized. Here we report the kinetic and thermodynamic characterizatio...
متن کامل